Nilai lim_(x→2)⁡ tan⁡(2-√2x)/(x^2-2x)=⋯

www.jagostat.com

www.jagostat.com

Website Belajar Matematika & Statistika

Website Belajar Matematika & Statistika

Bahas Soal Matematika   »   Limit   ›  

Nilai \( \displaystyle \lim_{x \to 2} \ \frac{\tan (2-\sqrt{2x})}{x^2 - 2x} = \cdots \)

  1. \( \frac{1}{4} \)
  2. \( \frac{1}{8} \)
  3. \( 0 \)
  4. \( -\frac{1}{6} \)
  5. \( -\frac{1}{4} \)

(SPMB 2005)

Pembahasan:

\begin{aligned} \lim_{x \to 2} \ \frac{\tan (2-\sqrt{2x})}{x^2 - 2x} &= \lim_{x \to 2} \ \frac{\tan (-\sqrt{2} \ (\sqrt{x}-\sqrt{2}))}{ x \ (\sqrt{x}+\sqrt{2})(\sqrt{x}-\sqrt{2}) } \\[8pt] &= \lim_{x \to 2} \ \frac{\tan (-\sqrt{2} \ (\sqrt{x}-\sqrt{2}))}{(\sqrt{x}-\sqrt{2}) } \cdot \lim_{x \to 2} \ \frac{1}{ x \ (\sqrt{x}+\sqrt{2})} \\[8pt] &= -\sqrt{2} \cdot \frac{1}{2(\sqrt{2} + \sqrt{2})} = -\sqrt{2} \cdot \frac{1}{4\sqrt{2}} \\[8pt] &= - \frac{1}{4} \end{aligned}

Jawaban E.